Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Debbie Cannon, ${ }^{\text {a }}$ Antonio Quesada, ${ }^{\text {a }}$ + Jairo Quiroga, ${ }^{\text {b }}$ Diana Mejía, ${ }^{\text {b }}$ Braulio Insuasty, ${ }^{\text {b }}$ Rodrigo Abonia, ${ }^{\text {b }}$ Justo Cobo, ${ }^{\text {c }}$ Manuel Nogueras, ${ }^{c}$ Adolfo Sánchez ${ }^{c}$ and John Nicolson Low ${ }^{\text {d }}$ *
${ }^{\text {a }}$ Department of Electronic Engineering and Physics, University of Dundee, Dundee DD1 4 HN , Scotland, ${ }^{\mathbf{b}}$ Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, ${ }^{\text {c }}$ Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and ${ }^{\mathbf{d}}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland.

+ Antonio Quesada is a visiting researcher from the Departamento de Química, Inorgánica y Orgánica, Universidad de Jaén, Spain.

Correspondence e-mail:
jnlow111@hotmail.com

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.051$
$w R$ factor $=0.137$
Data-to-parameter ratio $=18.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3,7,7-Trimethyl-4-(β-naphthyl)-4,7,8,9-tetrahydro-2H-pyrazolo[3,4-b]quinolin-5(6H)-one

The title compound, $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$, has a supramolecular structure of hydrogen bonding comprising $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds which form a series of anti-parallel $C(8)$ chains linked together by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N} R_{2}^{2}(8)$ base-paired motifs which together form corrugated sheets containing $R_{6}^{6}(34)$ rings. This is one of a series of four substituted 3,7,7-trimethyl-4,7,8,9-tetrahydro$2 H$-pyrazolo[3,4-b]quinolin- $5(6 H)$-one compounds which all have identical supramolecular structures.

Comment

Pyrazolo[3,4-b]quinolines are of interest as possible antiviral agents (Crenshaw et al., 1976, 1978; Smirnoff \& Crenshaw, 1977). Some of their derivatives exhibit parasiticidic properties (Bristol-Meyers Co, 1973), and have been studied as potential antimalarial agents (Stein et al., 1970). Some pyrazolo[3,4-b]quinolines have shown bactericidal activity (Farghaly et al., 1989), have also been used as vasodilators (Bell \& Ackerman, 1990) and evaluated for enzymatic inhibitory activity (Gatta et al., 1991).

In previous reports (Quiroga, Hormaza et al., 1998; Quiroga, Insuasty et al., 1998), we have reported an efficient and versatile synthesis of novel 4,7,8,9-tetrahydro-pyrimidoand 4,7,8,9-tetrahydropyrazolo[3,4-b]quinolin-5-ones from suitable pyrimidine and pyrazole amines to which dimedone and substituted benzaldehyde afford the ring annelation to quinoline.

(I)

Selected bonds and angles for the title compound, (I), are given in Table 1 and a molecular view is given in Fig. 1.

The hydrogen-bonding pattern comprises anti-parallel $C(8)$ ($\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 51^{\mathrm{i}}$) chains linked together by $R_{2}^{2}(8)$ (N9H9‥N $1{ }^{\mathrm{ii}}$) base-paired motifs (Bernstein et al., 1995). This combination forms a corrugated sheet which contains $R_{6}^{6}(34)$ rings. This is shown in Fig. 2. The details of the hydrogen bonds are given in Table 2.

Received 11 January 2001 Accepted 18 January 2001 Online 30 January 2001

Figure 1
A view of the molecule with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Examination of the structure with PLATON (Spek, 2000) showed that there were no solvent-accessible voids in the crystal lattice.

Experimental

A solution of 5-aminopyrazole (1 mmol), dimedone, $(1 \mathrm{mmol})$ and 2naphthaldehyde (1 mmol) in 15 ml of absolute ethanol was heated to reflux for $20-50 \mathrm{~min}$ (thin-layer chromatography control control). The reaction mixture was cooled and the solid corresponding to the title compound was filtered out, washed with ethanol, dried and recrystallized from ethanol to afford suitable crystals for diffraction. 65% yield, m.p. 602 K).

Crystal data
$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$
$M_{r}=357.44$
Monoclinic, $P 2_{1} / c$
$a=9.1222(18) \AA$
$b=15.281(3) \AA$
$c=14.346(3) \AA$
$\beta=106.13(3)^{\circ} \AA$
$V=1921.0(7) \AA^{3}$
$Z=4$
Data collection
KappaCCD diffractometer
φ and ω scans with κ offsets
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski \&
Minor, 1997)
$T_{\text {min }}=0.974, T_{\text {max }}=0.989$
16205 measured reflections
4401 independent reflections

$$
\begin{aligned}
& D_{x}=1.236 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4401 \\
& \quad \text { reflections } \\
& \theta=2.0-27.6^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=150(1) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.35 \times 0.18 \times 0.14 \mathrm{~mm} \\
& \\
& 2994 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.062 \\
& \theta_{\max }=27.6^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-19 \rightarrow 19 \\
& l=-18 \rightarrow 18 \\
& \text { Intensity decay: negligible }
\end{aligned}
$$

Figure 2
View of the hydrogen-bonded sheets lying parallel to [010] showing the $C(8)$ chains, the $R_{2}^{2}(8)$ rings and the $R_{8}^{8}(34)$ rings. Atom $\mathrm{O} 51^{\mathrm{i}}$ is at $\left(\frac{1}{2}-x, \frac{1}{2}+y\right.$, $\left.\frac{3}{2}-z\right)$ and atom $\mathrm{N} 1^{\mathrm{ii}}$ is at $(-x, 1-y, 2-z)$.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.137$
$S=1.03$
4401 reflections
245 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0763 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

N1-C9 1	$1.328(2)$	C8 $8-\mathrm{N} 9$	$1.358(2)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.366(2)$	$\mathrm{N} 9-\mathrm{C} 9 A$	$1.390(2)$
N2-C3	$1.347(2)$		
C9 $A-\mathrm{N} 1-\mathrm{N} 2$	$102.25(12)$	$\mathrm{C} 8 A-\mathrm{N} 9-\mathrm{C} 9 A$	$117.82(12)$
C3-N2-N1	$113.42(12)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.88	1.95	2.810 (2)	165
N9 - H9 . . N $1^{\text {ii }}$	0.88	2.05	2.878 (2)	155

Symmetry codes: (i) $-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $-x, 1-y, 2-z$.

H atoms were treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$ and $\mathrm{N}-\mathrm{H}=0.88 \AA$.

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: $D E N Z O-S M N$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2000); software used to
prepare material for publication: SHELXL97 and WordPerfect macro PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the EPSRC, X-ray Crystallographic Service, University of Southampton, using an EnrafNonius KappaCCD diffractomenter. The authors thank the staff for all their help and advice. We are grateful to the Ministerio de Educación y Cultura for the award of a grant to one of the authors (AQ).

References

Bell, M. R \& Ackerman, J. H. (1990). US Patent 4,920,128.
Bernstein, J., Davis, R. E., Shimoni. L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bristol-Meyers Co. (1973). French Demande, 2, 149, 275.
Crenshaw, R. R., Luke G. M. \& Smirnoff, P. (1976). J. Med. Chem. 19, 262 275.

Crenshaw, R. R., Luke, G. M. \& Smirnoff, P. (1978). Canadian Patent 10,32,538.
Farghaly, M., Habib, N. S., Khalil, M. A. \& El-Sayed, O. A. (1989). Alexandria J. Pharm. Sci. 3, 1, 90-94.

Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Gatta, F., Pomponi, M. \& Marta, M. (1991). J. Heterocycl. Chem. 28, 13011307.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Quiroga, J., Hormaza, A., Insuasty, B., Ortiz, A. J., Sánchez A. \& Nogueras, M. (1998). J. Heterocycl. Chem. 35, 231-233.

Quiroga, J., Insuasty, B., Hormaza, A., Saitz C. \& Jullian, C. (1998). J. Heterocycl Chem. 35, 575-578.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Smirnoff, P. \& Crenshaw, R. R. (1977). Antimicrob. Agents Chemother. 11, 571-573.
Spek, A. L. (2000). PLATON. May 2000 Version. University of Utrecht, The Netherlands.
Stein, R. G., Biel, J. H. \& Singh, T. (1970). J. Med. Chem. 13, 326-327.

